Dear Author,

Attached please find a gratis pdf file of your article/note published in *Herpetological Review*. You are receiving this pdf at no charge as a benefit of SSAR membership, and it is for your personal use only (see copyright notice below).

Sincerely,

SSAR Publications Office

Notice warning concerning copyright restrictions: The copyright law of the United States (title 17, United States Code) governs the making of copies or other reproductions of copyrighted material such as PDFs. One of these specific conditions is that the copy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes, or later uses, a PDF, copy, or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. The Society for the Study of Amphibians and Reptiles (SSAR) holds the copyright to this PDF. SSAR authorizes the author to use this PDF to fill reprint requests for private study, scholarship and research purposes. It is a violation of SSAR's copyright to distribute this PDF via mass emails, or by posting this pdf on any website for download — Except the author's own personal (not business) website / webpage.

While conducting wildlife trade research in a Metro Manila pet center, EYS collected seven fecal pellets between 28 November 2012 and 17 December 2012 from multiple wild-caught S. leytensis (SCL 71–193 mm; gender undetermined; N = 30). Snail shell fragments were identified as Pomacea canaliculata (an invasive species in the Philippines), Melanoides sp. (family Thiariidae) and Planorbis bruneus (family Planorbidae) (Fig. 1). Six out of seven fecal pellets also contained rice grains (Oryza sativa) (Fig. 2). To our knowledge, this is the first report of rice in the diet of a Philippine turtle.

Voucher specimens were preserved in 70% ethanol and deposited in the herpetological collection of the Philippine National Museum (EYS 263–265, and EYS 267) and malacological collection of the University of the Philippines, Diliman (EYS 262, EYS 266, and EYS 271).

EMERSON Y. SY, Philippine Center for Terrestrial and Aquatic Research, 1198 Benavidez St., Unit 1202, Tondo, Manila, Philippines (e-mail: emersony@gmail.com); EMMANUEL RYAN C. DE CHAVEZ, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai, Japan and Animal Biology Division, Institute of Biological Sciences College of Arts and Sciences, University of the Philippines Los Baños 4031, College, Laguna, Philippines (e-mail: radixquad@yahoo.com).

CROCODYLIA — CROCODILIANS

The first observation was made during July 1983 on Rockefeller Wildlife Refuge (Cameron Parish, Louisiania, USA) when RME found the carcass of a small alligator (total length [TL] approximately 1.3 m) floating in a drainage ditch adjacent to an active alligator nest. When a coworker attempted to retrieve the carcass with a noose pole, the nesting female alligator (TL ca. 2.1 m) swam rapidly across the ditch from the nest site, seized the carcass at the base of the tail, and swam back to the nest. Once at the nest, the female climbed up the bank dragging the carcass partially out of the water. The nesting female was identified by a series of marked caudal scutes as an escapee from a captive breeding enclosure on the refuge. Based on the behavior of the nesting female, we assume she was responsible for the death of the smaller alligator. Because female alligators actively defend nests against potential predators (Hunt and Ogden 1991. J. Herpetol. 25:448–453), the heightened aggressiveness of the attending female may have played a role in this incident. The ultimate fate of the alligator carcass could not be determined, but we suspect the female may have cached it nearby (Doody 2009. Herpetol. Rev. 40:26–29).

The second observation occurred on 24 June 2013 (1319 h) when PLT and a co-worker were flying in a helicopter at an altitude ≤ 46 m marking alligator nests as part of an on-going research project at Rockefeller Wildlife Refuge. While flying at low level over the Superior Canal System along Josephine Bayou, a large adult alligator was observed beside the carcass of a smaller adult; the latter was floating ventral side up and the tail was missing, presumably eaten by the larger alligator. The bloated condition of the carcass suggested the alligator had been killed at least 24 h prior to our observation. The TL of the larger and smaller alligator were estimated to be 3.3 m and 1.8–2.1 m, respectively.
Because adult female _A. mississippiensis_ in Louisiana rarely exceed 2.7 m in TL (Joanen et al. 1984. Proc. Ann. Conf. Southeast Assoc. Fish Wildl. Agencies 38:201–211), the body size of the larger alligator strongly suggests it was a male.

The third observation was made on 1 July 2013 (1425 h) while PLT and JTL were flying transects and counting alligator nests as part of an annual population census of _A. mississippiensis_ in coastal Louisiana (McNease et al. 1994. _In Crocodiles: Proceedings of 12th Working Meeting of IUCN/SSC Crocodile Specialist Group_, pp. 108–120, IUCN Publications, Gland, Switzerland). While flying in a helicopter at an altitude of approximately 46 m over an extensive freshwater marsh surrounding Lake Des Allemands (St. Charles Parish), a large alligator (TL ca. 3.3 m) was observed with the carcass of a smaller alligator held between its jaws (Fig. 1). The larger alligator was consuming the carcass when interrupted by the low-flying aircraft. The condition of the carcass suggested the smaller alligator had been killed only a short time (<12 h) before our arrival. Although the body size of the carcass was difficult to determine because of extensive damage to the head and torso, we estimate its TL was between 1.8 and 2.1 m. As the helicopter hovered overhead, the larger alligator grasped the carcass and submerged beneath the floating marsh vegetation. As in the previous 2013 observation, the body size of the larger alligator indicated it was most likely a male.

Our observations of cannibalism by _A. mississippiensis_ are noteworthy for several reasons. First, previous reports have inferred cannibalism from the presence of alligator remains or metal marking tags in stomach contents (Giles and Childs, _op. cit._; Delany and Abercrombie 1986. J. Wildl. Manage. 50:348–352; Platt et al. 1990. Northeast Gulf Sci. 11:123–130; Rootes and Chabreck, _op. cit._; Delany et al., _op. cit._), and direct observations of cannibalistic behavior among wild _A. mississippiensis_ appear lacking in the scientific literature. Such observations are important because although stomach contents analyses are useful for determining dietary composition, this methodology reveals little about the foraging mode (i.e., predation vs. scavenging), which is crucial to understanding cannibalism as a trophic pathway (DeVault and Rhodes 2002. Acta Theriol. 47:185–192). In this regard our observations are significant, as all three appear to be instances of predation rather than scavenging, a foraging mode that is common among crocodilians (Pitman, _op. cit._; Atwell 1959. African Wildl. 13:13–22; Platt et al. 2007. Southwest. Nat. 52:310–317). Second, our observations occurred at two widely separated (>200 km) locations and when combined with other reports from Louisiana (Giles and Childs, _op. cit._; Taylor 1986. Proc. Ann. Conf. Southeast. Assoc. Game Fish Comm. 40:338–341; Platt et al., _op. cit._; Rootes and Chabreck, _op. cit._) suggest that cannibalism probably occurs in alligator populations throughout the state. Finally, our observations support the conclusion of Rootes and Chabreck (_op. cit._) that large adult alligators (TL > 2.7 m) prey almost exclusively on large subadult and small adult conspecifics (TL = 1.2–2.1 m) rather than juveniles (TL < 1.2 m).

STEVEN G. PLATT, Wildlife Conservation Society, Myanmar Program, Office Block C-1, Aye Yeik Mon 1st Street, Hlaing Township, Yangon, Myanmar (e-mail: sgplatt@gmail.com); **RUTH M. ELSEY** (e-mail: relsey@wlf.la.gov) and **PHILLIP L. TROSCLAIR III** (e-mail: ptrosclair@wlf.la.gov), Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, 5476 Grand Chenier Highway, Grand Chenier, Louisiana 79643, USA; **JEB T. LINSCOMBE**, Louisiana Department of Wildlife and Fisheries, 2415 Darnall Road, New Iberia, Louisiana 70560, USA (e-mail: jlinscombe@wlf.la.gov).

SQUAMATA — LIZARDS

AGAMA ANCHIETAE (*Anchieta’s Agama*). **DIET.** *Agama anchietae* occurs from southern Democratic Republic of the Congo, south through Angola, Namibia, and into northwestern South Africa. Although little is known about the diet of *Agama anchietae*, southern African lizards in the genus *Agama* are known to feed heavily on ants, including ants in the genera *Pheidole*, *Crematogaster*, and *Anoprolepis* (Branch 1998. Field Guide to Snakes and Other Reptiles of Southern Africa. Struik Publishers, Cape Town. 399 pp.; Heideman 2002. J. Herpetol. 36:515–520). The only published dietary information for *A. anchietae* is that it feeds on termites and small beetles (FitzSimons 1943. The Lizards of South Africa. Transvaal Museum, Pretoria. 528 pp.). Recent observations made in the Swakop River Valley, in the west-central part of the Namib-Naukluft National Park, Namibia (22.70014°N, 14.91606°W, WGS84; elev. 194 m) extend the known diet of *A. anchietae*. On 12 May 2013 at 0949 h an adult female *A. anchietae* was noosed on a rocky hillside. Body temperature immediately after capture was 34.8°C, ground surface temperature in full sun was 33.9°C, and air temperature 10 mm above ground surface was 25.9°C. Upon capture the lizard regurgitated a large bolus of small ants (>50 ants) that were later identified to be from the *Lepisiota capensis* species group (Marsh 1986. Madoqua 14:333–344; www.antsofafrica.org, accessed 17 January 2013). Upon closer examination it was revealed that the lizard had been situated adjacent to, and feeding from, a large aggregation of *Lepisiota* ants on the rock face. To our knowledge this is the first report of *A. anchietae* feeding on this small, ubiquitous ant, and adds to the paucity of data concerning its diet.

We thank Theo Wassenaar of Namibia’s Gobabeb Research and Training Centre for support and the Namibian Ministry of Environment and Tourism for permission to work in the Namib-Naukluft National Park.

IAN W. MURRAY, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, Johannesburg, South Africa (e-mail: lan.Murray@wits.ac.za); **HILARY M. LEASE**, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, Johannesburg, South Africa.